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Higher-Order Theory of Gravitation 
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Received December 28, 1987 

The field equations obtained by introducing a correction in the Hilbert 
Lagrangian in the form of a series of hinite terms in R (=- g,~R "~) are considered 
in order to study the implications for the cosmological singularity. 

1. I N T R O D U C T I O N  

The observable universe today seems to be remarkably homogeneous 
and isotropic on a very large scale, and a good cosmological model has 
been constructed which is capable of  describing its large-scale properties 
very nicely. This is the so-called Fr iedman-Rober tson-Walker  (FRW) cos- 
mology. It represents a perfectly homogeneous and isotropic space. Regard- 
less of  this feature, we have to ask, why is the universe described by such 
a model? The answers are: either the universe has always been like th is - - that  
is, the initial conditions were such that the universe was and has remained 
isotropic and homogeneous;  or the universe started in a less symmetrical 
phase and evolved through some dynamical process to become an FRW 
cosmology today. The former is certainly a very unsatisfactory solution, 
and is also improbable statistically. 

A way out is provided by the inflationary scenarios (Guth, 1981). In 
these models one usually assumes that the universe becomes dominated by 
a positive vacuum energy-- tha t  is, a cosmological constant A > 0 - - a n d  for 
a period of time it expands exponentially at the Hubble rate H = (3A) 1/2, 
followed by a reheating period. This eventually terminates in an FRW, fiat, 
radiation-dominated universe. Thereafter, it can proceed with its evolution 
in the standard way. 

At classical and at quantum levels the smoothening of initial 
inhomogeneities and anisotropies is associated with particle creation 
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(Grishchuck and Zel'dovich, 1982). Graviton creation is understood from 
the fact that the gravitational wave equations, which are an inevitable 
consequence of Einstein theory of gravitation, are not conformally invariant. 
This leads to the fact that gravitational waves can be amplified under certain 
adiabatic conditions in the early universe (Grishchuk, 1977). It amounts to 
graviton creation in the quantum sense. But this is not so for electromag- 
netism. 

Gravitational wave equations for an FRW background in the form 

ds 2 = a2( ~7 )( d~72 - dx  2 - dy  2 - dz  2) (la) 

c dt  = a(~q) d~q (lb) 

take the form 

~"+~[n2-(a"/a)] = 0  (2) 

when transformed conformally (g,~ = e-2~g~,~; q~t3... = e-~(s-l~b~...) on a 
flat background (Pandey, 1983). Interestingly, the manifestation of gravita- 
tion appears in the fo rmof  an additional potential, a " / a .  Significantly, it 
is different from other massless wave equations in a Minkowski background. 
In order to put this equation on a par with electromagnetism, we considered 
a modification of the Einstein field equations with the help of a Lagrangian 
(Pandey, 1983) 

N 

5C = R -  • C n ( l Z R ) " / 6 1 2 ]  (3) 
n = 2  

where 1 is the characteristic length and Cn are arbitrary dimensionless 
coefficients introduced to nullify the addition potential in (2). 

This Langragian strongly modifies the Einstein field equations. 
However, the idea of extending the Einstein-Hilbert action of gravity to 
include higher derivatives has been around for decades (Weyl, 1919; Pauli, 
1919; Eddington, 1965; Yang, 1974). Also, the motivation for examining 
such extended Einstein theories has been due to their renormalizability and 
their being ghost-free (Stelle, 1977). They have also been predicted as the 
low-energy limit of superstring theory (Zwiebach, 1981). 

Nonetheless, relativistic gravitational theories derived from a Lan- 
grangian containing quadratic terms in the curvature tensor have been 
considered in constructing cosmological models without singularities 
(Ruzmaikina and Ruzmaikin, 1970; Nariai and Tomita, 1971; Anderson, 
1983, 1984). Therefore, it is natural to study the field equations obtained 
from the Lagrangian (3) with possible implications for the cosmological 
singularity. 



Higher-Order Theory of Gravitation 6 9 7  

2. FIELD E Q U A T I O N S  

The Lagrangian (3) contains a polynomial  in R of a finite number  of 
terms. This should not be disturbing, because it is an observational fact 
that our universe is not asymptotically fiat. There is enough matter on our 
past light-cone to cause it to refocus (Hawking and Penrose, 1970). The 
total energy of the universe is exactly zero, the positive energy of the 
gravitons and matter particles being exactly compensated by the negative 
gravitational potential energy. That is why the universe is expanding. Also, 
the unitarity is not well defined, except in scattering calculations in 
asymptotically fiat spaces. Moreover, with these terms it may be possible 
to find a higher dimensional theory to cancel divergences or to lead to a 
renormalizable theory. So, we consider the above Langrangian in the form 

N 

3 7 : R +  y~ a . R  ~ (4) 
n = 2  

The classical field equations derived from (4) are 

N 
1 n - -1  n . ~ - ~ g ~ R +  E nanR [ R ~ - ( 1 / 2 n ) g ~ R - [ ( n - 1 ) / R ] ( R ; ~ ; ~ - g ~ D R )  

n = 2  

- [(n - 1)(n - 2) /R2](R;~R;~ - g.~R;aR;a)] = KT.~ (5) 

Now, for the sake of brevity, we drop the summation sign ~, which is 
indicated by n itself. 

The trace is 

3n(n  - 1)a~R ~-2 ~ R  + 3 n ( n  - 1)(n -2)anR~-3R;~,R ;'~ 

= KT+ R + (2 - n)a, ,R" (6) 

Equation (5) can be written in the form 

( l  + n a , R " - l ) R ~ , ,  

= xT~,  + n (n  - 1)a,Rn-2R;~;~, 

+ n(n  - 1)(n -2)anR"-3R;uR;~,  

+ [(�89 +�89 - n (n  - 1 )a , ,Rn-2DR - n(n  - 1) 

x (n - 2) a,,R"-aR;,~R ;~ ]guy (7) 

Here it should be noticed that 1 + na,,R "-1 ~ O, or, equivalently, 

1 + 2a2R + 3a3 Ra -t- 4a4 R3 + .  �9 �9 -t- N a N R  N- l  r 0 (8) 

because o f t h e  Cauchy problem. 
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3. ENERGY CONDITIONS AND THE COSMOLOGICAL MO D EL 

It is believed that in higher order theories cosmological models can be 
constructed without singularities. But, as is evident from the Hawking- 
Penrose theorem, singularities occur under certain conditions. One of  
these is 

R~o~ ~co ~ --- 0 (9) 

for every nonspacelike geodesic; ~o" is the tangent vector. This relation is 
called the "timelike convergence condition" for timelike geodesics. It comes 
from the Einstein equations with the "strong energy condition," 

T~,~oo ~'to ~ - ( T / 2 ) to ~, to ~ >- 0 (10) 

where T is the trace of the energy-momentum tensor T~,~. 
Again, for null geodesics, the condition is called the "null-convergence 

condition," which gives, through the Einstein equations, the "weak" energy 
condition" 

T~o%J ~ -> 0 (11) 

The dominant energy condition (11) is equivalent to demanding that 
the energy density be nonnegative and the energy flow causal. All known 
forms of matter satisfy this condition. For a perfect fluid is reduces to p -> [Pl. 

The strong energy condition for a perfect fluid reduces to the usual 
requirement that p + 3 p -  0, i.e., a large negative energy density or large 
negative pressures must be present to violate this condition. 

By considering the field equations (7), we examine these properties 
(for the A = 0 case) in those models for which the metric is represented in 
diagonal form, namely 

d s  2 = d t 2 +  gx,(t)(to')2 + g22(t)(to2)2 + g~3(t)(oa3) 2 (12) 

Here ta i (i = 1, 2, 3) are one-forms. Also, we take 

Tz,, = ( p  + p ) u , u , ~  - p g ~ , ,  (13) 

with 

p = hp,  0 -  < h --- 1, (14) 

where h is a constant. The streamlines of the fluid are timelike geodesics 
with the tangent vector uz. 

Now, if we introduce the scale factor 

S(I)  = ( g l l "  g22" g33) 1/6 (15) 

then 

D R  : k + 3 ( ~ / s ) R  

where a dot denotes a derivative with respect to the time t. 

(16) 
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4. T I M E L I K E  G E O D E S I C S  

Suppose  the matter  is at rest in the coordinate  system under  consider-  
ation. Then 

u ~' - -  8 ~  (17)  

Therefore,  by mult iplying both  sides o f  equat ion (7) by ~ ~, 6o 80 we get 

(I  + 2a2R + 3a3R2 + 4aaR3 + �9 �9 �9 + NaNRN)Roo 

= Kp + R / 2  +l(a2Ra+ a3  R 3  -t- a n R a q  - .  �9 �9 + aNR N) 

- (3 gR/s)[2a2 + 2 . 3  a3R + 3 �9 4a4 R2 +" �9 " + ( N  - I )  NaNR N-z] 

+ ( R ; ~ R  ; ~ - R 2 ) [ 1  �9 2 �9 3 a 3 + 2 . 3  �9 4 a a R + 3  �9 4 . 5 a s R  2 

+ . . .  + ( N  - 2 ) ( N  - 1)NaNR N-3] (18) 

by virtue o f  (13) and (16) 
The timelike geodesics are complete  if  

R0o<0  (19)  

Therefore,  in view of  (8), the timelike geodesics are complete;  then, for 

( I + 2 a a R + 3 a 3 R 2 + 4 a 4 R 3 + . . . + N a N R N - 1 ) > O  or < 0  (20) 

the following condit ions must  hold:  

{ Kp + R / 2 + �89 a2R2 + a3 R3 +. �9 �9 -I- aNR N) 

- ( 3 i R /  s)(2a2 + 2 " 3a3R + 3 �9 4a4R2+ �9 �9 .+ ( N -  1)NAN RN-2) 

- ( R , ~ R  ; ~ - R 2 ) [ 1  �9 2 �9 3 a 3 + 2  �9 3 �9 4 a 4 R + 3  �9 4 �9 5asR2+  �9 �9 �9 

+ ( N - 2 ) ( N - 1 ) N a N R N - 3 ] } < O  or > 0  (21) 

where obviously p = Too. 
Here it should be noted that for  N = 2  (the Lagrangian becomes 

R + a2R2), the condit ions (19)-(21) for completeness  o f  timelike geodesics 
are R0o < 0 leading to 

for l + 2 a 2 R >  0: K p + R / 2 + � 8 9  (22) 

for 1 + 2 a 2 R  < 0 :  K p + R / 2 + � 8 9  (23) 

5. N U L L  G E O D E S I C S  

Here we consider  the case o f  radial null geodesics only. The tangent  
vector is taken as 

o) ~ = (l  ~ l', O, 0) (24) 
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with 

l, f l  ~ = 0 (25) 

Therefore,  multiplying both  the sides o f  equat ion (7) by ~o~to v, we get 

( 1 + 2 a 2 R  + 3 a 3 R 2 + 4 a 4  R3 + .  �9 �9 + N a N R  N -  1 ) R~ , ,w  ~to " 

= KT~o~toV + [1 " 2 a 2 + 2 "  3 a 3 R + 3  �9 4a4 R2 

+ "  �9 �9 + ( N - 1) N a N R  N-2]R;~;v to i~ to  ~ 

+[1  �9 2 �9 3 a 3 + 2 "  3 �9 4 a 4 R + 3  �9 4 . 5 a s R  2 

+ .  �9 �9 + ( N -  2 ) ( N  - 1 ) N a N R N - 3 ] [ R ; ~ , R ; ~ t o " t o  ~] (26) 

These geodesics are complete  provided that 

R ~ o o ~ w  ~ < 0 (27) 

This means that for 

1 + 2 a 2 R  + 3 a 3 R 2 + 4 a 4 R 3 +  �9 �9 �9 + N a N  R N - 1  ~ 0 (28) 

the fol lowing condit ions must  hold accordingly:  

x T ~ , , w ~ w "  + [ 1  �9 2 a 2 + 2  �9 3 a 3 R + .  �9 �9 + ( N -  1 ) N a N R N - 2 ] R ; ~ , , , t o ~ w ~ "  

+ [ 1 �9 2 . 3  a3 + 2 . 3  �9 4 a a R  + .  �9 �9 + ( N - 2) ( N  - 1) N a N R  N--3] R , ~ R ;  ~,w "to ~ 

0 (29) 

These condit ions could be further simplified by using equations (24) and 
(25). 

However ,  for N = 2, these geodesics are complete  if they satisfy (27). 
This leads to 

for l + 2 a z R > 0 :  ~ x p + n / 6 - - a 2 [ ( 3 g / s ) + ( g , H / 2 g H ) ] [ ~ < O ,  (30) 

for l + 2 a 2 R  < 0 :  2 x p + R / 6 - a 2 [ ( 3 ~ / s ) + ( g , ~ l / 2 g , l ) ] [ ~ > O ,  (31) 

where p = Too. For  the empty case p = 0, one finds 

R - 6 a z R [ ( 3 g / s )  + (g,1/291,)] < 0 or > 0 (32) 

depending on whether 1 + 2 a 2 R  > 0 or <0.  
For  completeness o f  the timelike and null geodesics there are formal 

restrictions, as seen in the above. Are they satisfied? They offer the oppor-  
tunity of  avoiding singularities. 
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6. S O M E  C O N S I D E R A T I O N S  FOR N = 2  

Here the action can be written as 

A = -(1/167r)  f d4x (-g)l/2(R + a2R2) + surface terms (33) 

and the conditions for the completeness of timelike and null geodesics given 
in the above. Furthermore, it can be seen that in the FRW universe (Le 
Denmat and Sirousse Zia, 1987), timelike convergence leads to g - 0 .  Thus, 
one needs to find a solution with g>  0, which is seen to be the definition 
of generalized inflation (Lucchin and Matarrease, 1985). But, for a null 
geodesic, R~oJ %J ~ < 0 leads to (J/s). This means that the Hubble parameter 
increases with time. 

Whitt (1984) has expressed the full fourth-order field equations obtain- 
able from the action (33) as Einstein gravity coupled to a massive scalar 
field. So we define a new metric by 

~ = (1 +2a2R)g~ (34) 

Then 

where 

/ ~  = R ~  - [(2a2R;~;~ + g~a2 [] R) / (1  + 2a2R)] 

+ [(6a2R;~R;~)/(1 + 2a2R) 2] (35) 

r : (3/4~)l/2 a2R (36) 

This leads to the new field equations 

/~.~ _ 1~.~/~ = 8,n"T~, (37) 

where 

T.~ = [1 + 1/2 -2 1 " "A 4(~'/3) O] {6,~b;~-~g.v[4~.x6' +(1/6a2)4~2]} (38) 

that is, we have the energy-momentum tensor now multiplied by a factor 
[l+4(Tr/3)l/2tk] -2. If 4~ is small, gravity is coupled to a scalar field with 
rn 2= (6a2) -1. But when ~b = - 1 / 4 ( 3 / ~ r )  1/2, the conformal transformation 
relating ffu~ and g ~  is singular. 

The conditions for geodesic completeness in the null timelike cases as 
discussed in the above can also be studied here for the expression (38) of T~v. 
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